Домашний музей
Telefunken
Новые разработки
Форум Любимые лампы
Написать письмо



Radiosound.ru - Философия радиоприема

Подписка на журнал Радио


Rambler's Top100




Сергей Комаров

Правильный расчет силового трансформатора

Сразу оговорюсь, что буду рассматривать однофазные трансформаторы для питания наземной стационарной радиоаппаратуры мощностью в десятки - сотни ватт, что имеет самое распространенное применение.

Прежде, чем приступить к расчетам трансформатора, которых может быть великое множество, необходимо договориться о критериях его качества, что непременно отразится на построении расчетных формул. Я считаю, что главный качественный показатель силового трансформатора для радиоаппаратуры это его надежность. Следствие надежности - это минимальный нагрев трансформатора при работе (иными словами он должен быть всегда холодным!) и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть "жестким").

Другие критерии оптимизации кроме надежности, как-то: экономия меди, минимальные габариты или вес, высокая удельная мощность, удобство намотки, минимизация стоимости, ограниченный срок службы (чтобы новые покупали чаще, взамен сгоревших) я не считаю приемлемыми в инженерной практике. Методики "вышибания" из имеющегося типоразмера сердечника наимаксимальнейшей мощности, я тоже считаю неприемлемыми. - Такие трансформаторы долго не работают и греются как черти.

Хотите экономить - покупайте китайскую дешевку или советский ширпотреб. Но помните: "Скупой всегда платит дважды!".

Трансформатор должен работать и не создавать проблем. Это его главная функция.
Исходя из этого, будем его и рассчитывать!
Прежде всего, необходимо уяснить для себя некоторую минимальную теорию.

Итак: силовой трансформатор. Не идеальный. А по сему, эти неидеальности нужно понимать и правильно учитывать. Главных неидеальностей у силового трансформатора - две.
1. Потери на активном сопротивлении провода обмоток (зависят от материала провода и от плотности, протекающего через него тока).
2. Потери на перемагничивание в сердечнике, - на неком "магнитном сопротивлении" (зависят от материала сердечника и от значения магнитной индукции).

Именно эти две неидеальности должны быть разумно-минимальными, чтобы трансформатор удовлетворял требованиям надежности.

Активное сопротивление обмоток и, как следствие, их нагрев, определяется заложенной при расчете плотностью тока в проводе. А по сему, ее значение должно быть оптимальным. На основании большого практического опыта рекомендую использовать значение плотности тока в медном проводе не более 3,2 ампера на квадратный миллиметр сечения. При использовании серебряного провода, плотность тока можно увеличить до 3,5 ампер на квадратный миллиметр. А вот, для алюминиевого провода она не должна превышать значение 2 ампера на квадратный миллиметр. Указанные значения плотности тока категорически превышать нельзя! И из этих значений мы выведем формулы для определения диаметра провода обмоток, коими будем пользоваться в расчете.

Мотать обмотки более толстым проводом (при меньшем значении плотности тока) - можно. Более тонким - категорически нет! Однако, и более толстым проводом мотать обмотки не стоит, поскольку тогда мы рискуем не уложить нужное число витков в окно сердечника. А в хорошем трансформаторе должно быть много витков, чтобы свести к минимуму магнитные потери и чтобы не грелся его сердечник.

Большинство холоднокатаных электротехнических сталей сохраняют свою линейность до значения магнитной индукции 1,35 Тесла или 13500 Гаусс. Но надо не забывать, что напряжение в розетке электросети может иметь разброс от 198 до 242 вольт, что соответствует нормированному 10-и процентному отклонению от номинала как в плюс, так и в минус. То есть, если мы хотим, чтобы во всем диапазоне питающих напряжений наш трансформатор работал надежно, надо его рассчитать так, чтобы сердечник не подходил бы к нелинейности при любом допустимом напряжении питающей сети. В том числе и при 242 вольтах. А по сему, на номинальном напряжении 220 вольт, магнитная индукция должна выбираться не более 1,2 Тесла или 12000 Гаусс.

Соблюдение этих двух указанных требований обеспечит высокий КПД трансформатора и высокую стабильность выходных напряжений при изменении тока нагрузки от нуля до максимального значения. Иными словами, мы получим очень "жесткий" трансформатор. Что и нужно! А вот увеличение расчетного значения индукции более 1,2 Тесла приведет не только к нагреву сердечника, но и к снижению "жесткости" трансформатора. Если расчитывать трансформатор на значение индукции более 1,3 Тесла, то мы получим "мягкий" трансформатор, выходные напряжения которого, плавно просаживаются при увеличении тока нагрузки от нуля до его номинального значения. Не для всех радиоустройств такие трансформаторы пригодны. Впрочем, в транзисторных схемах можно с успехом использовать стабилизатор выпрямленного напряжения. Но это - дополнительная схема, дополнительные габариты, дополнительная рассеиваемая мощность, дополнительные деньги и дополнительная ненадежность. Не лучше ли сразу сделать хороший трансформатор?

У мягкого питающего трансформатора напряжения на одних вторичных обмотках зависит от потребляемых токов в других - за счет просадки в общих цепях - на активном сопротивлении первичной обмотки и на магнитном сопротивлении. Например, если мы питаем от мягкого трансформатора двухтактный ламповый усилитель, работающий в режиме класса В или АВ, то изменение потребления по анодной цепи приведет к дополнительным колебаниям напряжения накала ламп. И, поскольку, напряжение накала ламп имеет также допустимый разброс в 10% от номинала, мягкий трансформатор внесет в это напряжение дополнительную нестабильность еще в 10, а то и в 15 процентов. А это неизбежно, сначала сократит выходную мощность усилителя на больших громкостях (инерционные просадки громкости), а с течением времени приведет к более ранней потери эмиссии у ламп.

Экономия на силовом трансформаторе аукается более дорогими потерями в радиолампах и в параметрах радиоустройств. Вот уж воистину: "Экономия - путь к разорению и нищете!"


В настоящее время наиболее распространены магнитопроводы следующих конфигураций:

Дальнейший расчет трансформатора будем вести по строгим классическим формулам из учебника электротехники:

1. При соблюдении достигнутых договоренностей КПД трансформатора (при наиболее часто встречающихся мощностях 80 - 200 Вт) будет не ниже 95 процентов, а то и выше. Поэтому, в формулах будем использовать значение КПД = 0,95.

2. Коэффициент заполнения окна сердечника медью для тороидальных трансформаторов составляет 0,35. Для обычных каркасных броневых или стержневых - 0,45. При широких каркасах и большой длине намотки одного слоя (h), значение Km может доходить и до значения 0,5 ... 0,55, как, например, у магнитопроводов типа Б69 и Б35, параметры которых приведены на рисунке. При бескаркасной промышленной намотке Km может иметь значения и до 0,6 ... 0,65. Для справки: теоретический предел значения Km для слоевого размещения круглого провода без изоляции в квадратном окне - 0,87.

Приведенные практические значения Km достижимы лишь при ровной укладке провода строго виток к витку, тонкой межслойной и межобмоточной изоляции и заделке выводов за пределами окна сердечника (на боковых вылетах обмотки). При изготовлении каркасных обмоток в любительских условиях, в условиях лабораторного или опытного производства, лучше принимать значение Km = 0,45 ... 0,5.

Разумеется, все это касается обычных силовых трансформаторов для ламповой или транзисторной аппаратуры, с выходными и питающими напряжениями до 1000 вольт, где не предъявляются повышенные изоляционные требования к обмоткам и к заделке их выводов.

3. Габаритная мощность трансформатора, в ваттах, на конкретно выбранном сердечнике определяется по формуле:

Где:
η = 0,95 - КПД трансформатора;
Sc и So - площади поперечного сечения сердечника и окна, соответственно [кв. см];
f - нижняя рабочая частота трансформатора [Гц];
B = 1,2 - магнитная индукция [T];
j - плотность тока в проводе обмоток [A/кв.мм];
Km - коэффициент заполнения окна сердечника медью;
Kc = 0,96 - коэффициент заполнения сечения сердечника сталью;

4. Задавшись напряжениями обмоток, количество необходимых витков можно рассчитать по такой формуле:

Где:
U1, U2, U3, ... - напряжения обмоток в вольтах, а n1, n2, n3, ... - число витков обмоток.

Если изначальные договоренности нами в точности соблюдены, и мы делаем жесткий трансформатор, то число витков как первичной, так и вторичной обмоток определяется по одной и той же формуле. Если же мы будем использовать трансформатор при предельном значении мощности для имеющегося типоразмера сердечника, рассчитанное по этой формуле, или мы проектируем маломощные трансформаторы (менее 50 Вт), с большим числом витков и тонким проводом обмоток, то число витков вторичных обмоток следует увеличить в 1/√η раз. С учетом нашей договоренности, это составит 1,026 или больше рассчетного на 2,6%.

Что же касается напряжений накальных обмоток, то здесь стоит вспомнить указание самой главной книги по радиолампам: "Руководство по применению приемно-усилительных ламп", выпущенное для радиоинженеров-разработчиков Государственным комитетом по электронной технике СССР в 1964 году.

Надо открыть это руководство на 13-ой странице, внимательно рассмотреть график на рисунке 1, и уяснить из него, что оптимальное напряжение накала радиоламп для сохранения их максимальной надежности и, соответственно, долговечности составляет 95% от номинала. Что для ламп с напряжением накала 6,3 вольта, составит ровно 6 вольт. Поэтому не надо увеличивать число витков накальных обмоток на 2,6%. Пусть будет, как есть.

5. Определяем токи обмоток:
Ток первичной обмотки: I1 = P / U1
При использовании двухполупериодного выпрямителя средний ток каждой половины обмотки будет в 1,41 раза (корень из двух) меньше, чем необходимый выпрямленный ток нагрузки. В случае использования мостового полупроводникового выпрямителя, ток обмотки будет в 1,41 раза больше, чем выпрямленный ток нагрузки. Поэтому, надо не забыть в формулы для определения диаметров проводов подставлять потребления по постоянному току, в первом случае поделенные, а во втором, умноженные на 1,41.

6. Рассчитываем диаметры проводов обмоток исходя из протекающих в них токов по следующим формулам (для меди, серебра или алюминия):

Полученные значения округляем в сторону увеличения до ближайшего стандартного диаметра провода.

7. Делаем проверку расчета. Мощность первичной обмотки - произведение питающего напряжения на потребляемый ток, должна быть равна сумме мощностей всех вторичных обмоток. То есть: U1 x I1 = U2 x I2 + U3 x I3 + U4 x I4 + ...

Намотав трансформатор, для проведения дальнейших расчетов выпрямителя необходимо замерить некоторые его параметры.

  • Активное сопротивление первичной обмотки.

  • Активное сопротивление вторичных обмоток.

  • Точные значения напряжений вторичных обмоток, разумеется, проверив, чтобы в сети при этом напряжение составляло 220 вольт. Если же оно отличается от номинала (но находится в пределах 198 - 242), то пропорционально пересчитать измеренные значения.

  • Ток холостого хода первичной обмотки (какой ток трансформатор потребляет из сети при отсутствии нагрузки на его вторичных обмотках).

К примеру,
Тороидальный силовой двухобмоточный трансформатор, мощностью 530 Ватт, который я сам, вручную, мотал в 1982 году на сердечнике от сгоревшего бытового переходного 400-ваттного автотрансформатора 127/220 вольт, называвшегося в торговой сети "Юг-400", имел следующие параметры:
Магнитная индукция при напряжении 220 вольт - 1,2 Тесла,
Число витков первичной обмотки (220 вольт) - 1100.
Диаметр провода первичной обмотки - 0,96 мм.
Число витков вторичной обмотки (127 вольт) - 635.
Диаметр провода вторичной обмотки - 1,35 мм.
При этом, ток холостого хода получился 7 (семь!) миллиампер.

На протяжении восемнадцати лет, не выключаясь, через этот трансформатор у меня питался "холостяцкий" холодильник "Саратов-II" (тот самый, при работе с которым сгорел автотрансформатор "Юг") после перевода нашего района на напряжение сети 220 вольт.

Для сравнения.
"Родная", промышленная, обмотка того самого трансформатора "Юг" на 220 вольт содержала 880 витков. Не удивительно, что он грелся как сволочь, даже будучи лишь автотрансформатором, и в конце-концов сгорел. Да, это и понятно, ведь, советская бытовая промышленность была заинтересована в увеличении покупательского спроса. Ну, вот и достигалось это не широкой номенклатурой товаров, а ограниченным сроком их работы!

Не надо экономить, - это, ведь, то же самое, что самому себе гадить.

Желаю удачи!